Petr Kůrka, Bedřich Velický
Hermeneutika a metaforika čísel
Kniha je věnována genezi současného chápání pojmu čísla, které je mnohotvárné. Osou je postup od čísel přirozených po kvaterniony a oktoniony, který je strukturován jako zřetězení hermeneutických cyklů jednak uvnitř matematiky, jednak mezi matematikou a fyzikou. Přirozená a racionální čísla mají úzkou vazbu na náš pobyt ve světě, jsou víceméně součástí našeho přirozeného světa. Jinak je tomu s čísly zápornými, iracionálními a komplexními (imaginárními). Ta vznikala formálním způsobem z vnitřních potřeb matematiky, často proti vůli a s odporem samotných matematiků. Teprve se zápornými a iracionálními čísly však bylo možné vybudovat diferenciální a integrální počet. Teorie diferenciálních rovnic pak umožnila formulaci univerzálně platných fyzikálních zákonů od newtonovské dynamiky přes termodynamiku, teorii elektromagnetického pole až po teorii relativity a kvantovou mechaniku. V té pak hrají zásadní roli čísla komplexní, vstupující přímo do jejích základů a byl to matematický formalismus, který motivoval zavedení imaginární jednotky do Schrödingerovy rovnice, dynamického principu mikrosvěta. Vedle této hlavní linie je pozornost věnována třem významným modifikacím koncepce čísla: od přirozených čísel k transfinitním číslům, ordinálním a kardinálním, od racionálních čísel k algebraickým a algoritmickým a konečně od čísel obyčejných k číslům nestandardním.
Kniha je věnována genezi současného chápání pojmu čísla, které je mnohotvárné. Osou je postup od čísel přirozených po kvaterniony a oktoniony, který je strukturován jako zřetězení hermeneutických cyklů jednak uvnitř matematiky, jednak mezi matematikou a fyzikou. Přirozená a racionální čísla mají úzkou vazbu na náš pobyt ve světě, jsou víceméně součástí našeho přirozeného světa. Jinak je tomu s čísly zápornými, iracionálními a komplexními (imaginárními). Ta vznikala formálním způsobem z vnitřních potřeb matematiky, často proti vůli a s odporem samotných matematiků. Teprve se zápornými a iracionálními čísly však bylo možné vybudovat diferenciální a integrální počet. Teorie diferenciálních rovnic pak umožnila formulaci univerzálně platných fyzikálních zákonů od newtonovské dynamiky přes termodynamiku, teorii elektromagnetického pole až po teorii relativity a kvantovou mechaniku. V té pak hrají zásadní roli čísla komplexní, vstupující přímo do jejích základů a byl to matematický formalismus, který motivoval zavedení imaginární jednotky do Schrödingerovy rovnice, dynamického principu mikrosvěta. Vedle této hlavní linie je pozornost věnována třem významným modifikacím koncepce čísla: od přirozených čísel k transfinitním číslům, ordinálním a kardinálním, od racionálních čísel k algebraickým a algoritmickým a konečně od čísel obyčejných k číslům nestandardním.
Jazyk | slovenský |
Vydavateľ | Univerzita Karlova |
Rok vydania | 2021 |
Počet strán | 318 |
Typ viazania | brožovaná |
Hmotnosť (g) | 530 g |
Rozmery (š-v-h) | 230x160 |
EAN | 9788024648194 |
Dodacia doba | nedostupné |